top of page

Original Research papers

57. Nguyen PTM, Ishiwata-Kimata Y, Kimata Y

"Fast-growing Saccharomyces cerevisiae cells with a constitutive unfolded protein response and their potential for lipidic molecule production."
Appl. Environ. Microbiol. Vol.88, e0108322, 2022

https://pubmed.ncbi.nlm.nih.gov/36255243/

57
56. Hata T, Ishiwata-Kimata Y, Kimata Y
"Self-association status-dependent inactivation of the endoplasmic reticulum stress sensor Ire1 by C-terminal tagging with artificial peptides"
Biosci. Biotechnol. Biochem. Vol. 86, 739-746, 2022
https://pubmed.ncbi.nlm.nih.gov/35285870/
55. Hata T, Ishiwata-Kimata Y, Kimata Y
"Induction of the unfolded protein response at high temperature in Saccharomyces cerevisiae"
Int. J. Mol. Sci. Vol.23, 1669, 2022
https://pubmed.ncbi.nlm.nih.gov/35163590/
54. Ishiwata-Kimata Y, Le QG, Kimata Y
"Induction and aggravation of the endoplasmic-reticulum stress by membrane-lipid metabolic intermediate phosphatidyl-N-monomethylethanolamine"
Front. Cell Dev. Biol. Vol.9, 743018, 2022
https://pubmed.ncbi.nlm.nih.gov/35071223/
 
53. Phuong TH, Ishiwata-Kimata Y, Nishi Y, Oguchi N, Takagi H, Kimata Y
"Aeration mitigates endoplasmic reticulum stress in Saccharomyces cerevisiae even without mitochondrial respiration."
Microb. Cell Vol.8, 77-86, 2021
https://pubmed.ncbi.nlm.nih.gov/33816593/
52. Le QG, Ishiwata-Kimata Y, Phuong TH, Fukunaka S, Kohno K, Kimata Y
"The ADP-binding kinase region of Ire1 directly contributes to its responsiveness to endoplasmic reticulum stress."
Sci. Rep. Vol.11 4506, 2021
https://pubmed.ncbi.nlm.nih.gov/33627709/
51. Fauzee YNBM, Taniguchi N, Ishiwata-Kimata Y, Takagi H, Kimata Y
"The unfolded protein response in Pichia pastoris without external stressing stimuli."
FEMS Yeast Res. Vol.20 foaa053, 2020
https://pubmed.ncbi.nlm.nih.gov/33775971/
50. Tran DM, Ishiwata-Kimata Y, Mai TC, Kubo M, Kimata Y.
“The unfolded protein response alongside the diauxic shift of yeast cells and its involvement in mitochondria enlargement.”
Sci. Rep. Vol. 9 12780, 2019
https://www.ncbi.nlm.nih.gov/pubmed/31484935
 
49. Mai TC, Ishiwata-Kimata Y, Le QG, Kido H, Kimata Y.
“Dispersion of Endoplasmic Reticulum-associated Compartments by 4-phenyl Butyric Acid in Yeast Cells.”
Cell. Struct. Funct. Vol. 44, 173-182, 2019
https://www.ncbi.nlm.nih.gov/pubmed/31619600
 
48. Nguyen PTM, Ishiwata-Kimata Y, Kimata Y.
“Monitoring ADP/ATP ratio in yeast cells using the fluorescent-protein reporter PercevalHR.”
Biosci. Biotechnol. Biochem. Vol. 83, 824-828, 2019
https://www.ncbi.nlm.nih.gov/pubmed/30704350
 
47. Tran DM, Takagi H, Kimata Y.
“Categorization of endoplasmic reticulum stress as accumulation of unfolded proteins or membrane lipid aberrancy using yeast Ire1 mutants.”
Biosci. Biotechnol. Biochem. Vol. 83, 326-329, 2019
https://www.ncbi.nlm.nih.gov/pubmed/30319071
 
46. Mai TC, Munakata T, Tran DM, Takagi H, Kimata Y.
“A chimeric mutant analysis in yeast cells suggests BiP independent regulation of the mammalian endoplasmic reticulum-stress sensor IRE1α.”
Biosci. Biotechnol. Biochem. Vol. 82, 1527-1530, 2018
https://www.ncbi.nlm.nih.gov/pubmed/29806786
 
45. Mai CT, Le QG, Ishiwata-Kimata Y, Takagi H, Kohno K, Kimata Y.
“4-Phenylbutyrate suppresses the unfolded protein response without restoring protein folding in Saccharomyces cerevisiae.”
FEMS Yeast Res. Vol. 18, foy016, 2018
https://www.ncbi.nlm.nih.gov/pubmed/29452364
 
44. Itooka K, Takahashi K, Kimata Y, Izawa S.
“Cold atmospheric pressure plasma causes protein denaturation and endoplasmic reticulum stress in Saccharomyces cerevisiae.”
Appl. Microbiol. Biotechnol. Vol. 102, 2279-2288, 2018
https://www.ncbi.nlm.nih.gov/pubmed/29356871
 
43. Kawazoe N, Kimata Y, Izawa S.
“Acetic Acid Causes Endoplasmic Reticulum Stress and Induces the Unfolded Protein Response in Saccharomyces cerevisiae.”
Front. Microbiol. Vol. 8, 1192, 2017
https://www.ncbi.nlm.nih.gov/pubmed/28702017
42. Le QG, Ishiwata-Kimata Y, Kohno K, Kimata Y.
“Cadmium impairs protein folding in the endoplasmic reticulum and induces the unfolded protein response.”
FEMS Yeast Res. Vol.16, fow049, 2016
https://www.ncbi.nlm.nih.gov/pubmed/27298227
 
41. Mathuranyanon R, Tsukamoto T, Takeuchi A, Ishiwata-Kimata Y, Tsuchiya Y, Kohno K, Kimata Y.
“Tight regulation of the unfolded protein sensor Ire1 by its intramolecularly antagonizing subdomain.”
J. Cell Sci. Vol.128, 1762-172, 2015
https://www.ncbi.nlm.nih.gov/pubmed/25770101
 
40. Mochizuki T, Kimata Y, Uemura S, Abe F.
“Retention of chimeric Tat2-Gap1 permease in the endoplasmic reticulum induces unfolded protein response in Saccharomyces cerevisiae.”
FEMS Yeast Res. Vol.15, fov044, 2015
https://www.ncbi.nlm.nih.gov/pubmed/26071436
 
39. Miyagawa D, Ishiwata-Kimata Y, Kohno K, Kimata Y
“Ethanol stress impairs protein folding in the endoplasmic reticulum and activates Ire1 in Saccharomyces cerevisiae.”
Biosci. Biotechnol. Biochem. Vol.78,1389-1391, 2014
https://www.ncbi.nlm.nih.gov/pubmed/25130742
 
38. Ishiwata-Kimata Y, Yamamoto YH, Takizawa K, Kohno K, Kimata Y
F-actin and a type-II myosin are required for efficient clustering of the ER stress sensor Ire1.
Cell Struct. Funct. Vol.38, 135-143. 2013
https://www.ncbi.nlm.nih.gov/pubmed/23666407
 
37. Ishiwata-Kimata Y, Promlek T, Kohno K, Kimata Y
“BiP-bound and nonclustered mode of Ire1 evokes a weak but sustained unfolded protein response.”
Genes Cells Vol.18, 288-301, 2013
https://www.ncbi.nlm.nih.gov/pubmed/23387983
 
36. Nguyen TSL, Kohno K, Kimata Y
“Zinc depletion activates the endoplasmic reticulum-stress sensor Ire1 via pleiotropic mechanisms.”
Biosci. Biotechnol. Biochem. Vol. 77, 1337-1339, 2013
https://www.ncbi.nlm.nih.gov/pubmed/23748779
 
35. Promlek T, Ishiwata-Kimata Y, Shido M, Sakuramoto M, Kohno K, Kimata Y
“Membrane aberrancy and unfolded aroteins activate the endoplasmic reticulum-stress sensor Ire1 by different manners.”
Mol. Biol. Cell Vol.22, 3520-3532, 2011
https://www.ncbi.nlm.nih.gov/pubmed/21775630
 
34. Yanagitani K, Kimata Y, Kadokura H, Kohno K
“Translational pausing ensures membrane targeting and cytoplasmic splicing of XBP1u mRNA.”
Science Vol.331, 586-589, 2011
https://www.ncbi.nlm.nih.gov/pubmed/21233347
 
33. Yamamoto YH, Kimura T, Momohara S, Takeuchi M, Tani T, Kimata Y, Kadokura H, Kohno K
“A novel ER J-protein DNAJB12 accelerates ER-associated degradation of membrane proteins including CFTR.”
Cell Struct. Funct. Vol.35, 107-116, 2010
https://www.ncbi.nlm.nih.gov/pubmed/21150129
 
32. Yanagitani K, Imagawa Y, Iwawaki T, Hosoda A, Saito M, Kimata Y, Kohno K
“Cotranslational targeting of XBP1 protein to the membrane promotes cytoplasmic splicing of its own mRNA.”
Mol. Cell Vol.34, 191-200, 2009
https://www.ncbi.nlm.nih.gov/pubmed/19394296
 
31. Oikawa D, Kimata Y, Kohno K, Iwawaki T
“Activation of mammalian IRE1alpha upon ER stress depends on dissociation of BiP rather than on direct interaction with unfolded proteins.”
Exp. Cell Res. Vol. 315, 2496-2504. 2009
https://www.ncbi.nlm.nih.gov/pubmed/19538957
 
30. Takeuchi M, Kimata Y, Kohno K
“Saccharomyces cerevisiae Rot1 Is an Essential Molecular Chaperone in the Endoplasmic Reticulum.”
Mol. Biol. Cell Vol.19, 3514-3525, 2008
https://www.ncbi.nlm.nih.gov/pubmed/18508919
 
29. Kimata Y, Ishiwata-Kimata Y, Ito T, Hirata A, Suzuki T, Oikawa D, Takeuchi M, Kohno K
“Two regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteins.”
J. Cell Biol. Vol.179, 75-86, 2007
https://www.ncbi.nlm.nih.gov/pubmed/17923530
 
28. Kimura Y, Saito M, Kimata Y, Kohno K
“Transgenic mice expressing a fully nontoxic diphtheria toxin mutant, not CRM197 mutant, acquire immune tolerance against diphtheria toxin.”
J. Biochem. Vol.142, 105-112, 2007
https://www.ncbi.nlm.nih.gov/pubmed/17522091
 
27. Oikawa D, Kimata Y, Kohno K
“Self-association and BiP dissociation are not sufficient for activation of the ER stress sensor Ire1.”
J. Cell Sci. Vol.120, 1681-1688, 2007
https://www.ncbi.nlm.nih.gov/pubmed/17452628
26. Takeuchi M, Kimata Y, Hirata A, Oka M, Kohno K
“Saccharomyces cerevisiae Rot1p Is an ER-Localized Membrane Protein That May Function with BiP/Kar2p in Protein Folding.”
J. Biochem. Vol.139, 597-605, 2006
https://www.ncbi.nlm.nih.gov/pubmed/16567426
 
25. Kimata Y, Ishiwata-Kimata Y, Yamada S, Kohno K
“Yeast unfolded protein response pathway regulates expression of genes for anti-oxidative stress and for cell surface proteins.”
Genes Cells. Vol.11, 59-69, 2006
https://www.ncbi.nlm.nih.gov/pubmed/16371132
 
24. Oikawa D, Kimata Y, Takeuchi M, Kohno K
“An essential dimer-forming subregion of the endoplasmic reticulum stress sensor Ire1.”
Biochem J. Vol.391, 135-142, 2005
https://www.ncbi.nlm.nih.gov/pubmed/15954865
 
23. Kimata Y, Oikawa D, Shimizu Y, Ishiwata-Kimata Y, Kohno, K
“A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1.”
J. Cell Biol. Vol.167, 445-456, 2004
https://www.ncbi.nlm.nih.gov/pubmed/15520230
 
22. Kimata Y, Kimata YI, Shimizu Y, Abe H, Farcasanu IC, Takeuchi M, Rose MD, Kohno K
“Genetic evidence for a role of BiP/Kar2 that regulates Ire1 in response to accumulation of unfolded proteins.”
Mol. Biol. Cell Vol.14, 2559-2569, 2003
https://www.ncbi.nlm.nih.gov/pubmed/12808051
 
21. Ohdate H, Lim CR, Kokubo T, Matsubara K, Kimata Y, Kohno K
“Impairment of the DNA binding activity of the TATA-binding protein renders the transcriptional function of Rvb2p/Tih2p, the yeast RuvB-like protein, essential for cell growth.”
J. Biol. Chem. Vol.278, 14647-14656, 2003
https://www.ncbi.nlm.nih.gov/pubmed/12576485
 
20. Hosoda A, Kimata Y, Tsuru A, Kohno K
“JPDI, a novel endoplasmic reticulum-resident protein containing both a BiP-interacting J-domain and thioredoxin-like motifs.”
J. Biol. Chem. Vol.278, 2669-2676 2003
https://www.ncbi.nlm.nih.gov/pubmed/12446677
 
19. Fujioka Y, Kimata Y, Nomaguchi K, Watanabe K, Kohno K
“Identification of a novel non-structural maintenance of chromosomes (SMC) component of the SMC5/SMC6 complex involved in DNA repair.”
J. Biol. Chem. Vol.277, 21585-21591, 2002
https://www.ncbi.nlm.nih.gov/pubmed/11927594
 
18. Okushima Y, Koizumi N, Yamaguchi Y, Kimata Y, Kohno K, Sano H
“Isolation and Characterization of a Putative Transducer of Endoplasmic Reticulum Stress in Oryza sativa.”
Plant Cell Physiol. Vol.43, 532-539, 2002
https://www.ncbi.nlm.nih.gov/pubmed/12040100
 
17. Koizumi N, Martinez I, Kimata Y, Kohno K, Sano H, Chrispeels MJ
“Molecular characterization of two Arabidopsis Ire1 homologs, endoplasmic reticulum located transmembrane protein kinases.”
Plant Physiol. Vol.127, 949-962, 2001
https://www.ncbi.nlm.nih.gov/pubmed/11706177
 
16. Saito M, Iwawaki T, Taya C, Yonekawa H, Noda M, Inui Y, Mekada E, Kimata Y, Tsuru A, Kohno K
“Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice.”
Nature Biotechnol. Vol.19, 746-750, 2001
https://www.ncbi.nlm.nih.gov/pubmed/11479567
 
15. Iwawaki T, Hosoda A, Okuda T, Kamigori Y, Nomura-Furuwatari C, Kimata Y, Tsuru A, Kohno K
“Translation control by ER transmembrane kinase/ribonuclease IRE1 under ER stress.”
Nature Cell Biol. Vol.3, 158-164, 2001
https://www.ncbi.nlm.nih.gov/pubmed/11175748
 
14. Kimata Y, Ooboki K, Nomura-Furuwatari C, Hosoda A, Tsuru A, Kohno K
“Identification of a novel mammalian endoplasmic reticulum-resident KDEL protein using an EST database motif search.”
Gene Vol.261, 321-327, 2000
https://www.ncbi.nlm.nih.gov/pubmed/11167020
 
13. Yoshizawa F, Miura Y, Tsurumaru K, Kimata Y, Yagasaki K, Funabiki R
“Elongation factor 2 in the liver and skeletal muscle of mice is decreased by starvation.”
Biosci. Biotechnol. Biochem. Vol.64, 2482-2485, 2000
https://www.ncbi.nlm.nih.gov/pubmed/11193422
 
12. Okamura K, Kimata Y, Higashio H, Tsuru A, Kohno K
“Dissociation of Kar2p/BiP from an endoplasmic reticulum sensory molecule, Ire1p, triggers unfolded protein response in yeast.”
Biochem. Biophys. Res. Commun. Vol.279, 445-450, 2000
https://www.ncbi.nlm.nih.gov/pubmed/11118306
 
11. Lim CR, Kimata Y, Ohdate H, Kokubo T, Kikuchi N, Horigome T, Kohno K
“The Saccharomyces cerevisiae RuvB-like protein, Tih2p is required for cell cycle progression.”
J. Biol. Chem. Vol.275, 22409-22417, 2000
https://www.ncbi.nlm.nih.gov/pubmed/10787406
 
10. Higashio H, Kimata Y, Kiriyama T, Hirata A, Kohno K
“Sfb2p, a yeast protein related to Sec24p, can function as a constituent of COPII coats required for vesicle budding from the endoplasmic reticulum.”
J. Biol. Chem. Vol.275, 17900-17908, 2000
https://www.ncbi.nlm.nih.gov/pubmed/10749860
 
9. Kimata Y, Higashio H, Kohno K
“Impaired proteasome function rescues thermosensitivity of yeast cells lacking the coatomer subunit epsilon-COP.”
J. Biol. Chem. Vol.275, 10655-10660, 2000
https://www.ncbi.nlm.nih.gov/pubmed/10744762
 
8. Kimata Y, Lim CR, Kiriyama T, Nara A, Hirata A, Kohno K
“Mutation of the yeast epsilon-COP gene ANU2 causes abnormal nuclear morphology and defects in intracellular vesicular transport.”
Cell Struct. Funct. Vol.24, 197-208, 1999
https://www.ncbi.nlm.nih.gov/pubmed/10532354
 
7. Oka M, Nakai M, Endo T, Lim CR, Kimata Y, Kohno K
“Loss of Hsp70-Hsp40 chaperone activity causes abnormal nuclear distribution and aberrant microtubule formation in M-phase of Saccharomyces cerevisiae.”
J. Biol. Chem. Vol.273, 29727-29737, 1998
https://www.ncbi.nlm.nih.gov/pubmed/9792686
 
6. Kimata Y, Iwaki M, Lim CR, Kohno K
“A novel mutation which enhances the fluorescence of green fluorescent protein at high temperatures.”
Biochem. Biophys. Res. Commun. Vol.232, 69-73, 1997
https://www.ncbi.nlm.nih.gov/pubmed/9125154
 
5. Oka M, Kimata Y, Mori K, Kohno K
“Saccharomyces cerevisiae KAR2 (BiP) gene expression is induced by loss of cytosolic HSP70/Ssa1p through a heat shock element-mediated pathway.”
J. Biochem. Vol.121, 578-584, 1997
https://www.ncbi.nlm.nih.gov/pubmed/9133628
 
4. Lim CR, Kimata Y, Oka M, Nomaguchi K, Kohno K
“Thermosensitivity of green fluorescent protein fluorescence utilized to reveal novel nuclear-like compartments in a mutant nucleoporin NSP1.” 
J. Biochem. Vol.118, 13-17 1995
https://www.ncbi.nlm.nih.gov/pubmed/8537302
 
3. Kimata Y, Kohno K
“Elongation factor 2 mutants deficient in diphthamide formation show temperature-sensitive cell growth.”
J. Biol. Chem. Vol.269, 13497-134501 1994
https://www.ncbi.nlm.nih.gov/pubmed/8175783
 
2. Kimata Y, Harashima S, Kohno K
“Expression of non-ADP-ribosylatable, diphtheria toxin-resistant elongation factor 2 in Saccharomyces cerevisiae.”
Biochem. Biophys. Res. Commun. Vol.191, 1145-1151 1993
https://www.ncbi.nlm.nih.gov/pubmed/8466491
 
1. Masui M, Tsuchida K, Kimata Y, Ozaki S
“Epoxidation catalyzed by manganese(III) tetraphenylporphyrin chloride using dioxygen activated by a novel system containing N-hydroxyphthalimide and styrene.”
Chem. Pharm. Bull. Vol.35, 3078-3081, 1987
Reviews and Book Chapters
8. Le QG, Kimata Y.
"Multiple ways for stress sensing and regulation of the endoplasmic reticulum-stress sensors."
Cell Struct. Funct. In press
https://pubmed.ncbi.nlm.nih.gov/33775971/
7. Ishiwata-Kimata Y, Le QG, Kimata Y.
“Stress-sensing and regulatory mechanism of the endoplasmic-stress sensors Ire1 and PERK.”
Endoplasmic Reticulum Stress in Diseases Vol. 5, 1-10, 2018
https://www.degruyter.com/view/j/ersc.2018.5.issue-1/ersc-2018-0001/ersc-2018-0001.xml
 
6. Tran DM, Kimata Y.
“The unfolded protein response of yeast Saccharomyces cerevisiae and other organisms.”
Plant Morphology Vol. 30, 15-24, 2018
https://www.jstage.jst.go.jp/article/plmorphol/30/1/30_15/_article/-char/en
 
5. Kimata Y, Nguyen PTM, Kohno K
“Response and cytoprotective mechanisms against proteotoxic stress in yeast and fungi.”
in Stress Response Mechanisms in Fungi -Theoretical and Practical Aspects- (Book) pp. 161-188, Springer
https://www.springer.com/gp/book/9783030006822
4. Oikawa D, Kimata Y
“Experimental approaches for elucidation of stress-sensing mechanisms of the Ire1 family proteins.”
Methods Enzymol. Vol.490, 195-216, 2011
 
3. Kimata Y, Kohno K
“Endoplasmic reticulum stress-sensing mechanisms in yeast and mammalian cellsh
Curr. Opp. Cell. Biol. Vol.23, 135-142, 2011
https://www.ncbi.nlm.nih.gov/pubmed/21093243
 
2. Takeuchi M, Kimata Y, Kohno K
“Causal links between protein folding in the ER and events along the secretory pathway.”
Autophagy Vol.2, 323-324, 2006
https://www.ncbi.nlm.nih.gov/pubmed/16874095
 
1. Kimata Y, Lim CR, Kohno K
“S147P green fluorescent protein: a less thermosensitive green fluorescent protein variant.”
Methods Enzymol. Vol.302, 373-378, 1999

アンカー 11
アンカー 1
アンカー 8
アンカー 10
アンカー 3
アンカー 2
アンカー 12
アンカー 9
アンカー 7
アンカー 6
アンカー 5
アンカー 4
bottom of page