top of page

Original Research papers

61. Nguyen SLT, Nguyen THT, Do TT, Nguyen TT, Le TH, Nguyen TAT, Kimata Y.

"Induction of endoplasmic reticulum stress by prodigiosin in yeast Saccharomyces cerevisiae"

Curr. Issues Mol. Biol. Vol.46, 1768-1776 (2024)

https://pubmed.ncbi.nlm.nih.gov/38534732/

 

60. Sogawa A, Komori R, Yanagitani K, Ohfurudono M, Tsuru A, Kadoi K, Kimata Y, Yoshida H, Kohno K.

"Signal sequence-triage is activated by translocon obstruction sensed by an ER stress sensor IRE1α"

Cell Struct Funct. Vol.48, 211-221 (2023)

https://pubmed.ncbi.nlm.nih.gov/37766570/

59. Fauzee YNBM, Yoshida Y, Kimata Y

"Endoplasmic stress sensor Ire1 is involved in cytosolic/nuclear protein quality control in Pichia pastoris cells independent of HAC1"

Front. Microbiol. Vol.14, 1157146 (2023)

https://pubmed.ncbi.nlm.nih.gov/37415818/

58.  Phuong HT, Ishiwata-Kimata Y, Kimata Y

"An ER-accumulated mutant of yeast Pma1 causes membrane-related stress to induce the unfolded protein response"

Biochem. Biophys. Res. Commun. Vol. 667, 58-63 (2023)

https://pubmed.ncbi.nlm.nih.gov/37209563/

57. Nguyen PTM, Ishiwata-Kimata Y, Kimata Y

"Fast-growing Saccharomyces cerevisiae cells with a constitutive unfolded protein response and their potential for lipidic molecule production."
Appl. Environ. Microbiol. Vol.88, e0108322
 (2022)

https://pubmed.ncbi.nlm.nih.gov/36255243/

56. Hata T, Ishiwata-Kimata Y, Kimata Y
"Self-association status-dependent inactivation of the endoplasmic reticulum stress sensor Ire1 by C-terminal tagging with artificial peptides"
Biosci. Biotechnol. Biochem. Vol. 86, 739-746 (2022)
https://pubmed.ncbi.nlm.nih.gov/35285870/
55. Hata T, Ishiwata-Kimata Y, Kimata Y
"Induction of the unfolded protein response at high temperature in Saccharomyces cerevisiae"
Int. J. Mol. Sci. Vol.23, 1669 (2022)
https://pubmed.ncbi.nlm.nih.gov/35163590/
54. Ishiwata-Kimata Y, Le QG, Kimata Y
"Induction and aggravation of the endoplasmic-reticulum stress by membrane-lipid metabolic intermediate phosphatidyl-N-monomethylethanolamine"
Front. Cell Dev. Biol. Vol.9, 743018 (2022)
https://pubmed.ncbi.nlm.nih.gov/35071223/
 
53. Phuong TH, Ishiwata-Kimata Y, Nishi Y, Oguchi N, Takagi H, Kimata Y
"Aeration mitigates endoplasmic reticulum stress in Saccharomyces cerevisiae even without mitochondrial respiration."
Microb. Cell Vol.8, 77-86 (2021)
https://pubmed.ncbi.nlm.nih.gov/33816593/
52. Le QG, Ishiwata-Kimata Y, Phuong TH, Fukunaka S, Kohno K, Kimata Y
"The ADP-binding kinase region of Ire1 directly contributes to its responsiveness to endoplasmic reticulum stress."
Sci. Rep. Vol.11, 4506 (2021)
https://pubmed.ncbi.nlm.nih.gov/33627709/
51. Fauzee YNBM, Taniguchi N, Ishiwata-Kimata Y, Takagi H, Kimata Y
"The unfolded protein response in Pichia pastoris without external stressing stimuli."
FEMS Yeast Res. Vol.20 foaa053 (2020)
https://pubmed.ncbi.nlm.nih.gov/33775971/
50. Tran DM, Ishiwata-Kimata Y, Mai TC, Kubo M, Kimata Y.
“The unfolded protein response alongside the diauxic shift of yeast cells and its involvement in mitochondria enlargement.”
Sci. Rep. Vol. 9, 12780 (2019)
https://www.ncbi.nlm.nih.gov/pubmed/31484935
 
49. Mai TC, Ishiwata-Kimata Y, Le QG, Kido H, Kimata Y.
“Dispersion of Endoplasmic Reticulum-associated Compartments by 4-phenyl Butyric Acid in Yeast Cells.”
Cell. Struct. Funct. Vol. 44, 173-182 (2019)
https://www.ncbi.nlm.nih.gov/pubmed/31619600
 
48. Nguyen PTM, Ishiwata-Kimata Y, Kimata Y.
“Monitoring ADP/ATP ratio in yeast cells using the fluorescent-protein reporter PercevalHR.”
Biosci. Biotechnol. Biochem. Vol. 83, 824-828 (2019)
https://www.ncbi.nlm.nih.gov/pubmed/30704350
 
47. Tran DM, Takagi H, Kimata Y.
“Categorization of endoplasmic reticulum stress as accumulation of unfolded proteins or membrane lipid aberrancy using yeast Ire1 mutants.”
Biosci. Biotechnol. Biochem. Vol. 83, 326-329 (2019)
https://www.ncbi.nlm.nih.gov/pubmed/30319071
 
46. Mai TC, Munakata T, Tran DM, Takagi H, Kimata Y.
“A chimeric mutant analysis in yeast cells suggests BiP independent regulation of the mammalian endoplasmic reticulum-stress sensor IRE1α.”
Biosci. Biotechnol. Biochem. Vol. 82, 1527-1530 (2018)
https://www.ncbi.nlm.nih.gov/pubmed/29806786
 
45. Mai CT, Le QG, Ishiwata-Kimata Y, Takagi H, Kohno K, Kimata Y.
“4-Phenylbutyrate suppresses the unfolded protein response without restoring protein folding in Saccharomyces cerevisiae.”
FEMS Yeast Res. Vol. 18, foy016 (2018)
https://www.ncbi.nlm.nih.gov/pubmed/29452364
 
44. Itooka K, Takahashi K, Kimata Y, Izawa S.
“Cold atmospheric pressure plasma causes protein denaturation and endoplasmic reticulum stress in Saccharomyces cerevisiae.”
Appl. Microbiol. Biotechnol. Vol. 102, 2279-2288 (2018)
https://www.ncbi.nlm.nih.gov/pubmed/29356871
 
43. Kawazoe N, Kimata Y, Izawa S.
“Acetic acid causes endoplasmic reticulum stress and induces the unfolded protein response in Saccharomyces cerevisiae.”
Front. Microbiol. Vol. 8, 1192 (2017)
https://www.ncbi.nlm.nih.gov/pubmed/28702017
42. Le QG, Ishiwata-Kimata Y, Kohno K, Kimata Y.
“Cadmium impairs protein folding in the endoplasmic reticulum and induces the unfolded protein response.”
FEMS Yeast Res. Vol.16, fow049 (2016)
https://www.ncbi.nlm.nih.gov/pubmed/27298227
 
41. Mathuranyanon R, Tsukamoto T, Takeuchi A, Ishiwata-Kimata Y, Tsuchiya Y, Kohno K, Kimata Y.
“Tight regulation of the unfolded protein sensor Ire1 by its intramolecularly antagonizing subdomain.”
J. Cell Sci. Vol.128, 1762-172 (2015)
https://www.ncbi.nlm.nih.gov/pubmed/25770101
 
40. Mochizuki T, Kimata Y, Uemura S, Abe F.
“Retention of chimeric Tat2-Gap1 permease in the endoplasmic reticulum induces unfolded protein response in Saccharomyces cerevisiae.”
FEMS Yeast Res. Vol.15, fov044 (2015)
https://www.ncbi.nlm.nih.gov/pubmed/26071436
 
39. Miyagawa D, Ishiwata-Kimata Y, Kohno K, Kimata Y
“Ethanol stress impairs protein folding in the endoplasmic reticulum and activates Ire1 in Saccharomyces cerevisiae.”
Biosci. Biotechnol. Biochem. Vol.78,1389-1391 (2014)
https://www.ncbi.nlm.nih.gov/pubmed/25130742
 
38. Ishiwata-Kimata Y, Yamamoto YH, Takizawa K, Kohno K, Kimata Y
F-actin and a type-II myosin are required for efficient clustering of the ER stress sensor Ire1.
Cell Struct. Funct. Vol.38, 135-143 (2013)
https://www.ncbi.nlm.nih.gov/pubmed/23666407
 
37. Ishiwata-Kimata Y, Promlek T, Kohno K, Kimata Y
“BiP-bound and nonclustered mode of Ire1 evokes a weak but sustained unfolded protein response.”
Genes Cells Vol.18, 288-301 (2013)
https://www.ncbi.nlm.nih.gov/pubmed/23387983
 
36. Nguyen TSL, Kohno K, Kimata Y
“Zinc depletion activates the endoplasmic reticulum-stress sensor Ire1 via pleiotropic mechanisms.”
Biosci. Biotechnol. Biochem. Vol. 77, 1337-1339 (2013)
https://www.ncbi.nlm.nih.gov/pubmed/23748779
 
35. Promlek T, Ishiwata-Kimata Y, Shido M, Sakuramoto M, Kohno K, Kimata Y
“Membrane aberrancy and unfolded aroteins activate the endoplasmic reticulum-stress sensor Ire1 by different manners.”
Mol. Biol. Cell Vol.22, 3520-3532 (2011)
https://www.ncbi.nlm.nih.gov/pubmed/21775630
 
34. Yanagitani K, Kimata Y, Kadokura H, Kohno K
“Translational pausing ensures membrane targeting and cytoplasmic splicing of XBP1u mRNA.”
Science Vol.331, 586-589 (2011)
https://www.ncbi.nlm.nih.gov/pubmed/21233347
 
33. Yamamoto YH, Kimura T, Momohara S, Takeuchi M, Tani T, Kimata Y, Kadokura H, Kohno K
“A novel ER J-protein DNAJB12 accelerates ER-associated degradation of membrane proteins including CFTR.”
Cell Struct. Funct. Vol.35, 107-116 (2010)
https://www.ncbi.nlm.nih.gov/pubmed/21150129
 
32. Yanagitani K, Imagawa Y, Iwawaki T, Hosoda A, Saito M, Kimata Y, Kohno K
“Cotranslational targeting of XBP1 protein to the membrane promotes cytoplasmic splicing of its own mRNA.”
Mol. Cell Vol.34, 191-200 (2009)
https://www.ncbi.nlm.nih.gov/pubmed/19394296
 
31. Oikawa D, Kimata Y, Kohno K, Iwawaki T
“Activation of mammalian IRE1alpha upon ER stress depends on dissociation of BiP rather than on direct interaction with unfolded proteins.”
Exp. Cell Res. Vol. 315, 2496-2504 (2009)
https://www.ncbi.nlm.nih.gov/pubmed/19538957
 
30. Takeuchi M, Kimata Y, Kohno K
“Saccharomyces cerevisiae Rot1 Is an essential molecular chaperone in the endoplasmic reticulum.”
Mol. Biol. Cell Vol.19, 3514-3525 (2008)
https://www.ncbi.nlm.nih.gov/pubmed/18508919
 
29. Kimata Y, Ishiwata-Kimata Y, Ito T, Hirata A, Suzuki T, Oikawa D, Takeuchi M, Kohno K
“Two regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteins.”
J. Cell Biol. Vol.179, 75-86 (2007)
https://www.ncbi.nlm.nih.gov/pubmed/17923530
 
28. Kimura Y, Saito M, Kimata Y, Kohno K
“Transgenic mice expressing a fully nontoxic diphtheria toxin mutant, not CRM197 mutant, acquire immune tolerance against diphtheria toxin.”
J. Biochem. Vol.142, 105-112 (2007)
https://www.ncbi.nlm.nih.gov/pubmed/17522091
 
27. Oikawa D, Kimata Y, Kohno K
“Self-association and BiP dissociation are not sufficient for activation of the ER stress sensor Ire1.”
J. Cell Sci. Vol.120, 1681-1688 (2007)
https://www.ncbi.nlm.nih.gov/pubmed/17452628
26. Takeuchi M, Kimata Y, Hirata A, Oka M, Kohno K
“Saccharomyces cerevisiae Rot1p Is an ER-Localized membrane protein that may function with BiP/Kar2p in protein folding.”
J. Biochem. Vol.139, 597-605 (2006)
https://www.ncbi.nlm.nih.gov/pubmed/16567426
 
25. Kimata Y, Ishiwata-Kimata Y, Yamada S, Kohno K
“Yeast unfolded protein response pathway regulates expression of genes for anti-oxidative stress and for cell surface proteins.”
Genes Cells. Vol.11, 59-69 (2006)
https://www.ncbi.nlm.nih.gov/pubmed/16371132
 
24. Oikawa D, Kimata Y, Takeuchi M, Kohno K
“An essential dimer-forming subregion of the endoplasmic reticulum stress sensor Ire1.”
Biochem J. Vol.391, 135-142 (2005)
https://www.ncbi.nlm.nih.gov/pubmed/15954865
 
23. Kimata Y, Oikawa D, Shimizu Y, Ishiwata-Kimata Y, Kohno, K
“A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1.”
J. Cell Biol. Vol.167, 445-456 (2004)
https://www.ncbi.nlm.nih.gov/pubmed/15520230
 
22. Kimata Y, Kimata YI, Shimizu Y, Abe H, Farcasanu IC, Takeuchi M, Rose MD, Kohno K
“Genetic evidence for a role of BiP/Kar2 that regulates Ire1 in response to accumulation of unfolded proteins.”
Mol. Biol. Cell Vol.14, 2559-2569 (2003)
https://www.ncbi.nlm.nih.gov/pubmed/12808051
 
21. Ohdate H, Lim CR, Kokubo T, Matsubara K, Kimata Y, Kohno K
“Impairment of the DNA binding activity of the TATA-binding protein renders the transcriptional function of Rvb2p/Tih2p, the yeast RuvB-like protein, essential for cell growth.”
J. Biol. Chem. Vol.278, 14647-14656 (2003)
https://www.ncbi.nlm.nih.gov/pubmed/12576485
 
20. Hosoda A, Kimata Y, Tsuru A, Kohno K
“JPDI, a novel endoplasmic reticulum-resident protein containing both a BiP-interacting J-domain and thioredoxin-like motifs.”
J. Biol. Chem. Vol.278, 2669-2676 (2003)
https://www.ncbi.nlm.nih.gov/pubmed/12446677
 
19. Fujioka Y, Kimata Y, Nomaguchi K, Watanabe K, Kohno K
“Identification of a novel non-structural maintenance of chromosomes (SMC) component of the SMC5/SMC6 complex involved in DNA repair.”
J. Biol. Chem. Vol.277, 21585-21591 (2002)
https://www.ncbi.nlm.nih.gov/pubmed/11927594
 
18. Okushima Y, Koizumi N, Yamaguchi Y, Kimata Y, Kohno K, Sano H
“Isolation and Characterization of a Putative Transducer of Endoplasmic Reticulum Stress in Oryza sativa.”
Plant Cell Physiol. Vol.43, 532-539 (2002)
https://www.ncbi.nlm.nih.gov/pubmed/12040100
 
17. Koizumi N, Martinez I, Kimata Y, Kohno K, Sano H, Chrispeels MJ
“Molecular characterization of two Arabidopsis Ire1 homologs, endoplasmic reticulum located transmembrane protein kinases.”
Plant Physiol. Vol.127, 949-962 (2001)
https://www.ncbi.nlm.nih.gov/pubmed/11706177
 
16. Saito M, Iwawaki T, Taya C, Yonekawa H, Noda M, Inui Y, Mekada E, Kimata Y, Tsuru A, Kohno K
“Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice.”
Nature Biotechnol. Vol.19, 746-750 (2001)
https://www.ncbi.nlm.nih.gov/pubmed/11479567
 
15. Iwawaki T, Hosoda A, Okuda T, Kamigori Y, Nomura-Furuwatari C, Kimata Y, Tsuru A, Kohno K
“Translation control by ER transmembrane kinase/ribonuclease IRE1 under ER stress.”
Nature Cell Biol. Vol.3, 158-164 (2001)
https://www.ncbi.nlm.nih.gov/pubmed/11175748
 
14. Kimata Y, Ooboki K, Nomura-Furuwatari C, Hosoda A, Tsuru A, Kohno K
“Identification of a novel mammalian endoplasmic reticulum-resident KDEL protein using an EST database motif search.”
Gene Vol.261, 321-327 (2000)
https://www.ncbi.nlm.nih.gov/pubmed/11167020
 
13. Yoshizawa F, Miura Y, Tsurumaru K, Kimata Y, Yagasaki K, Funabiki R
“Elongation factor 2 in the liver and skeletal muscle of mice is decreased by starvation.”
Biosci. Biotechnol. Biochem. Vol.64, 2482-2485 (2000)
https://www.ncbi.nlm.nih.gov/pubmed/11193422
 
12. Okamura K, Kimata Y, Higashio H, Tsuru A, Kohno K
“Dissociation of Kar2p/BiP from an endoplasmic reticulum sensory molecule, Ire1p, triggers unfolded protein response in yeast.”
Biochem. Biophys. Res. Commun. Vol.279, 445-450 (2000)
https://www.ncbi.nlm.nih.gov/pubmed/11118306
 
11. Lim CR, Kimata Y, Ohdate H, Kokubo T, Kikuchi N, Horigome T, Kohno K
“The Saccharomyces cerevisiae RuvB-like protein, Tih2p is required for cell cycle progression.”
J. Biol. Chem. Vol.275, 22409-22417 (2000)
https://www.ncbi.nlm.nih.gov/pubmed/10787406
 
10. Higashio H, Kimata Y, Kiriyama T, Hirata A, Kohno K
“Sfb2p, a yeast protein related to Sec24p, can function as a constituent of COPII coats required for vesicle budding from the endoplasmic reticulum.”
J. Biol. Chem. Vol.275, 17900-17908 (2000)
https://www.ncbi.nlm.nih.gov/pubmed/10749860
 
9. Kimata Y, Higashio H, Kohno K
“Impaired proteasome function rescues thermosensitivity of yeast cells lacking the coatomer subunit epsilon-COP.”
J. Biol. Chem. Vol.275, 10655-10660 (2000)
https://www.ncbi.nlm.nih.gov/pubmed/10744762
 
8. Kimata Y, Lim CR, Kiriyama T, Nara A, Hirata A, Kohno K
“Mutation of the yeast epsilon-COP gene ANU2 causes abnormal nuclear morphology and defects in intracellular vesicular transport.”
Cell Struct. Funct. Vol.24, 197-208 (1999)
https://www.ncbi.nlm.nih.gov/pubmed/10532354
 
7. Oka M, Nakai M, Endo T, Lim CR, Kimata Y, Kohno K
“Loss of Hsp70-Hsp40 chaperone activity causes abnormal nuclear distribution and aberrant microtubule formation in M-phase of Saccharomyces cerevisiae.”
J. Biol. Chem. Vol.273, 29727-29737 (1998)
https://www.ncbi.nlm.nih.gov/pubmed/9792686
 
6. Kimata Y, Iwaki M, Lim CR, Kohno K
“A novel mutation which enhances the fluorescence of green fluorescent protein at high temperatures.”
Biochem. Biophys. Res. Commun. Vol.232, 69-73 (1997)
https://www.ncbi.nlm.nih.gov/pubmed/9125154
 
5. Oka M, Kimata Y, Mori K, Kohno K
“Saccharomyces cerevisiae KAR2 (BiP) gene expression is induced by loss of cytosolic HSP70/Ssa1p through a heat shock element-mediated pathway.”
J. Biochem. Vol.121, 578-584 (1997)
https://www.ncbi.nlm.nih.gov/pubmed/9133628
 
4. Lim CR, Kimata Y, Oka M, Nomaguchi K, Kohno K
“Thermosensitivity of green fluorescent protein fluorescence utilized to reveal novel nuclear-like compartments in a mutant nucleoporin NSP1.” 
J. Biochem. Vol.118, 13-17 (1995)
https://www.ncbi.nlm.nih.gov/pubmed/8537302
 
3. Kimata Y, Kohno K
“Elongation factor 2 mutants deficient in diphthamide formation show temperature-sensitive cell growth.”
J. Biol. Chem. Vol.269, 13497-134501 (1994)
https://www.ncbi.nlm.nih.gov/pubmed/8175783
 
2. Kimata Y, Harashima S, Kohno K
“Expression of non-ADP-ribosylatable, diphtheria toxin-resistant elongation factor 2 in Saccharomyces cerevisiae.”
Biochem. Biophys. Res. Commun. Vol.191, 1145-1151 (1993)
https://www.ncbi.nlm.nih.gov/pubmed/8466491
 
1. Masui M, Tsuchida K, Kimata Y, Ozaki S
“Epoxidation catalyzed by manganese(III) tetraphenylporphyrin chloride using dioxygen activated by a novel system containing N-hydroxyphthalimide and styrene.”
Chem. Pharm. Bull. Vol.35, 3078-3081 (1987)
Reviews and Book Chapters
10. Monguchi M, Kimata Y.
"Enforcement and enlargement of the Saccharomyces cerevisiae endoplasmic reticulum through artificial evocation of the unfolded protein response"
IgMIn Research Vol. 2 (2024)
https://www.igminresearch.com/articles/html/igmin142
9. Ishiwata-Kimata Y, Kimata Y.
"Fundamental and applicative aspects of the unfolded protein response in yeasts"
J. Fungi (Basel) Vol. 9, 989 (2023)
https://pubmed.ncbi.nlm.nih.gov/37888245/
8. Le QG, Kimata Y.
"Multiple ways for stress sensing and regulation of the endoplasmic reticulum-stress sensors."
Cell Struct. Funct. Vol. 46, 37-49 (2021)
https://pubmed.ncbi.nlm.nih.gov/33775971/
7. Ishiwata-Kimata Y, Le QG, Kimata Y.
“Stress-sensing and regulatory mechanism of the endoplasmic-stress sensors Ire1 and PERK.”
Cell Pathology Vol. 5, 1-10 (2018)
https://www.degruyter.com/view/j/ersc.2018.5.issue-1/ersc-2018-0001/ersc-2018-0001.xml
 
6. Tran DM, Kimata Y.
“The unfolded protein response of yeast Saccharomyces cerevisiae and other organisms.”
Plant Morphology Vol. 30, 15-24 (2018)
https://www.jstage.jst.go.jp/article/plmorphol/30/1/30_15/_article/-char/en
 
5. Kimata Y, Nguyen PTM, Kohno K
“Response and cytoprotective mechanisms against proteotoxic stress in yeast and fungi.”
in Stress Response Mechanisms in Fungi -Theoretical and Practical Aspects- (Book) pp. 161-188, Springer
https://www.springer.com/gp/book/9783030006822
4. Oikawa D, Kimata Y
“Experimental approaches for elucidation of stress-sensing mechanisms of the Ire1 family proteins.”
Methods Enzymol. Vol.490, 195-216 (2011)
 
3. Kimata Y, Kohno K
“Endoplasmic reticulum stress-sensing mechanisms in yeast and mammalian cellsh
Curr. Opp. Cell. Biol. Vol.23, 135-142 (2011)
https://www.ncbi.nlm.nih.gov/pubmed/21093243
 
2. Takeuchi M, Kimata Y, Kohno K
“Causal links between protein folding in the ER and events along the secretory pathway.”
Autophagy Vol.2, 323-324 (2006)
https://www.ncbi.nlm.nih.gov/pubmed/16874095
 
1. Kimata Y, Lim CR, Kohno K
“S147P green fluorescent protein: a less thermosensitive green fluorescent protein variant.”
Methods Enzymol. Vol.302, 373-378 (1999)

bottom of page